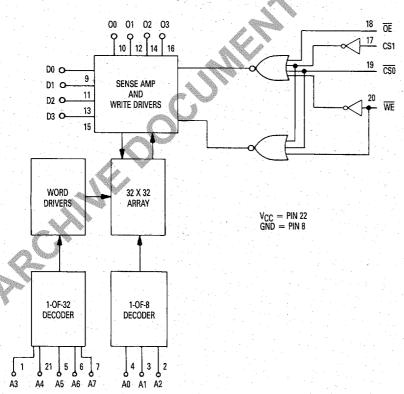
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

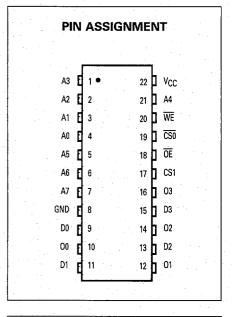
TTL 256 x 4-Bit Random Access Memory


The 93422 Series are 1024-bit Read/Write RAMs, organized 256 words by 4 bits, designed for high performance main memory and control storage applications.

They have full decoding on-chip, separate data input and data output lines, an active low-output enable, write enable, and two chip selects, one active high, one active low. These memories are fully compatible with standard TTL logic families. A three-state output is provided to drive bus-organized systems and/or highly capacitive loads.

- Three-State Outputs
- Non-Inverting Data Outputs
- Power Dissipation 0.26 mW/Bit Typical
- Standard 22-Pin, 400 Mil Wide Package
- Power Dissipation Decreases with Increasing Temperature
- Organized 256 Words x 4 Bits
- Two Chip Select Lines for Memory Expansion
- Address Access Time: 93422 60 ns Max
 93L422A 55 ns Max


93L422 — 75 ns Max


BLOCK DIAGRAM

Military 93422 93L422,A

PIN NAMES				
CS0, CS1 Chip Selects				
A0-A7 Address Inputs				
OE Output Enable				
WE Write Enable				
D0-D3 Data Inputs				
O0-O3 Data Outputs				

FUNCTIONAL DESCRIPTION

The 93422 Series are fully decoded 1024-bit random access memories organized 256 words by 4 bits. Word selections are achieved by means of an 8-bit address, A0-A7.

The Chip Select (CS0 and CS1) inputs provide for memory array expansion. For large memories, the fast chip select time permits the decoding of chip select from the address without increasing address access time.

The read and write operations are controlled by the state of the active low Write Enable (WE, Pin 20). With WE and CS0 held low and the CS1 held high, the data at Dn is written into the addressed location. To read, WE and CS1 are held high and CS0 is held low. Data in the specified location is presented at the output (O0-O2) and is non-inverted.

The three-state outputs provide drive capability for higher speeds with capacitive load systems. The third state (high impedance) allows bus-organized systems where multiple outputs are connected to a common bus.

During writing, the output is held in a high-impedance state.

GUARANTEED OPERATING RANGES

	Supply	/ Voltage	Ambient	
Part Number	Part Number Min Nom Max		Temp. (T _A)	
93422/BWAJC 93L422/BWAJC 93L422A/BWAJC	4.5 V	5.0 V	5.5 V	55°C to + 125°C

ABSOLUTE MAXIMUM RATINGS*

Storage Temperature Ceramic Package (W Suffix)	-65°C to +150°C
Operating Junction Temperature, T _J Ceramic Package (W Suffix)	<165°C
V _{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (dc)	-0.5 V to +5.5 V
Voltage Applied to Outputs (Output High)	-0.5 V to +5.5 V
Output Current (dc) (Output Low)	+20 mA
Input Current (dc)	- 12 mA to +5.0 mA

^{*}Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

TRUTH TABLE

	Inputs Output					
ŌĒ	CS0	CS1	WE	D0-D3	O0-O3	Mode
Х	Н	X	х	Х	High Z	Not Selected
Х	X	L 🔏	X	* X	High Z	Not Selected
Х	L	н	L	L	High Z	Write "0"
Х	L	Н	L	Н -	High Z	Write "1"
Н	X	X	Х	Х	High Z	Output Disabled
L	L	Н	Н	Х	00-03	Read

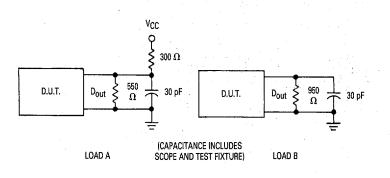
H = High Voltage Level L = Low Voltage Level

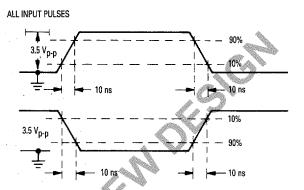
DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range)

			Limits						
Symbol	Characteristi	Min	Max	Units	Conditions				
VOL	Output Low Voltage		_	0.45	Vdc	V _{CC} = Min, I _{OL} = 8.0 mA			
VIH	Input High Voltage		2.1	-	Vdc	Guaranteed Input High Voltage for All Inputs			
V _{IL}	Input Low Voltage		_	0.8	Vdc	Guaranteed Input Low Voltage for All Inputs			
fiL	Input Low Current		- 0.01	-300	μAdc	V _{CC} = Max, V _{in} = 0.45 V			
ИН	Input High Current			40	μAdc	$V_{CC} = Max$, $V_{in} = 5.5 V$			
l _{off}	Output Current (High Z)		-	50 50	μAdc	V _{CC} = Max, V _{out} = 2.4 V V _{CC} = Max, V _{out} = 0.45 V			
los	Output Current Short Circuit to Ground		-10	-70	mAdc	V _{CC} = Max (Note 1)			
VOH	Output High Voltage		2.4	_	Vdc	V _{CC} = Min, I _{OH} = -5.2 mA			
VIK	Input Diode Clamp Voltage		_	- 1.5	Vdc	$V_{CC} = Max, l_{in} = -10 \text{ mA}$			
	93422			130	mAdc	$T_A = +125^{\circ}C$			
				155	mAdc	$T_A = +25^{\circ}C$			
¹cc	Power Supply Current		_	170	mAdc	$T_A = -55^{\circ}C$	V _{CC} = 5.5 V,		
, 	rower supply surrent	93L422A — 70 mAdc $T_A = +$		$T_A = +125^{\circ}C$	All Inputs Grounded				
	93L422		-	80	mAdc	$T_A = +25^{\circ}C$			
				90	mAdc	$T_A = -55^{\circ}C$			

Don't Care (High or Low)


AC OPERATING CONDITIONS AND CHARACTERISTICS


(Full operating voltage and temperature range)

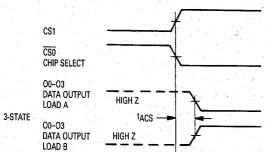
AC TEST LOAD AND WAVEFORMS

LOADING CONDITIONS

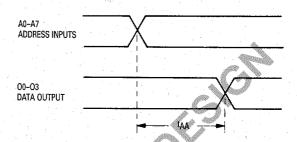
INPUT PULSES

	Characteristic	Characteristic 93422/BWAJC 93L422		93L422/	2/BWAJC 93L422		BWAJC	
Symbol	(Notes 1, 2, 3, 4, 5)	Min	Max	Min	Max	Min	Max	Unit
READ MODE	DELAY TIMES							ns
tACS -	Chip Select Time		45	_	45	_	40	
tZRCS	Chip Select to High Z	_	45	_	45	-	40	
tAOS	Output Enable Time	> <u>~</u>	45	_	45	_	40	
tZROS	Output Enable to High Z		45	_	45	_	40	
tAA	Address Access Time	<u> </u>	60	_	75	_	55	
WRITE MODE	DELAY TIMES							ns
tzws	Write Disable to High Z	_	45	_	45	_	45	
tWR	Write Recovery Time		50	_	50	_	45	
	INPUT TIMING REQUIREMENTS							ns
t₩	Write Pulse Width (to guarantee write)	30	· <u></u>	30	_	40	_	
twsp	Data Setup Time Prior to Write	5.0	_	5.0	_	5.0		
tWHD	Data Hold Time After Write	5.0		5.0		5.0	l	
twsa	Address Setup Time (at tw = Min)	10	_	10	_	10		
tWHA	Address Hold Time	10		10		5.0	_	
twscs	Chip Select Setup Time	5.0		5.0		5.0	_	
^t WHCS	Chip Select Hold Time	5.0		5.0		5.0	_	

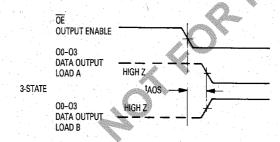
NOTES:

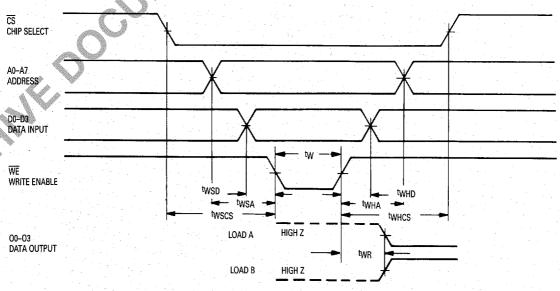

Output short circuit conditions must not exceed 1.0 second duration.
 The maximum address access time is guaranteed to be the worst-case bit in the memory.
 Load A used to measure transitions between logic levels and from High Z state to logic Low state.
 Load B used to measure transitions between High Z state to logic High state.
 Load C used to measure transitions from either logic High or Low state to High Z state.
 All time measurements are referenced to +1.5 Vdc except transitions into the High Z state where outputs are referenced to a delta of 0.5 Vdc from the logic level using Load C.
 See test circuit and waveforms.

5. See test circuit and waveforms.

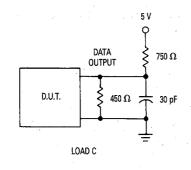

READ OPERATION TIMING DIAGRAM

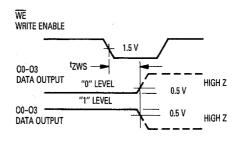
(All Time Measurements Referenced to 1.5 V)


PROPAGATION DELAY FROM CHIP SELECT

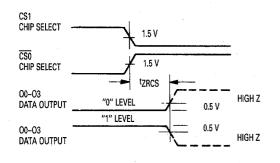

PROPAGATION DELAY FROM ADDRESS INPUTS

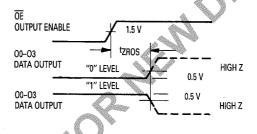
PROPAGATION DELAY FROM OUTPUT ENABLE




WRITE CYCLE TIMING

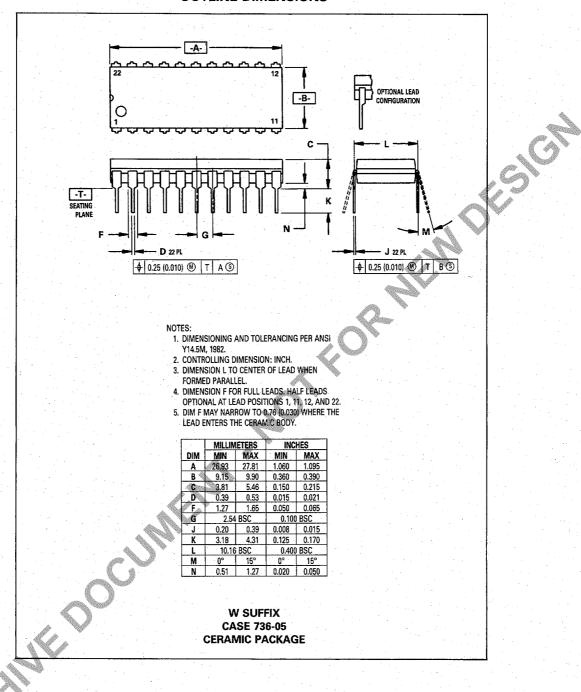
(ALL ABOVE MEASUREMENTS REFERENCE TO 1.5 V)


WRITE ENABLE TO HIGH Z DELAY



PROPAGATION DELAY FROM CHIP SELECT TO HIGH Z

PROPAGATION DELAY FROM OUTPUT ENABLE TO HIGH Z



(ALL tZXXX PARAMETERS ARE MEASURED AT A DELTA OF 0.5 V FROM THE LOGIC LEVEL AND USING LOAD C.)

θ ј д (Jur Amb		
Package Blown*	$ heta_{ m JC}$ (Junction to Case)	
W Suffix 50°C/W	75°C/W	15°C/W

^{*500} linear ft. per minute blown air.

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola shall determine availability and suitability of its product or products for the use intended. Motorola and make trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands Milton Keynes, MK145BP, England. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong.

